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Abstract—We present a theoretical model for the voting system
used by many decentralized autonomous organizations (DAOs) to
make decisions. Within this general framework, we define several
distributions representing potential allocations of voting weight
across different voters, competence levels for each voter, voter
perceptions of one another, and how voters choose who to delegate
to. We then simulate the voting process many times to determine
how the maximum number of voters one is allowed to delegate
to influences (i) the group’s probability of selecting the correct
alternative, (ii) the expected vote share of the correct alternative,
and (iii) the distribution of individual voters’ influence on the
final outcome. Our results show that DAOs should increase the
maximum number of allowed delegations from 1 to 10 as this
increases the decision success rate and expected vote share of
the correct alternative or makes voter influence more equitable
in all real-world scenarios.

I. INTRODUCTION

A. Background - Liquid Democracy

Liquid democracy describes a voting model where agents
are permitted to delegate their voting power to other agents,
who vote on their behalf. Standard liquid democracy assumes
that every agent has one vote to cast, and can choose to
delegate that vote to a single agent (including themselves),
as long as that delegation does not create a cycle.

Standard liquid democracy is usually modeled via a la-
beled, directed graph. Each vertex is a voter and its directed
edges represent delegations from one voter to another. In
simplistic models, one assumes two alternatives: “correct” and
“incorrect”. Each voter has a competence level, which is their
probability of voting correctly. In standard liquid democracy,
voters will delegate to other voters with higher competency
than their own.

Liquid democracy outperforms direct democracy in many
cases [9]. When low competency voters delegate to higher
competency voters, the probability of group accuracy ought

to increase. However, it can be worse than direct democracy
when the model extends to include voters’ inaccurate guesses
of competence and results in a strong consolidation of power
to a low competency voter.

Finding a mechanism for optimal delegation under standard
liquid democracy is a complex problem. It is known that
approximating an optimal delegation within an additive term
of 1

16 under standard liquid democracy is an NP-hard prob-
lem [10]. This problem becomes more complex as standard
liquid democracy is modified to accept partial delegations,
weighted voters, local delegation mechanisms, and other vari-
ations.

B. Background - DAOs

A particularly interesting application of liquid democracy
can be observed in the recent rise of decentralized autonomous
organizations (DAOs). While more academic work is required
to offer an operational definition for a DAO, we strictly explore
its mechanisms with respect to voting. DAOs use tokens–
governance ERC-20’s, transferable ERC-721’s, among other
technologies– held by a set of addresses on a blockchain net-
work to vote on proposals [11]. Votes cast onto the blockchain
are verified by validators via zero-knowledge proofing tech-
niques to ensure trustless verification of voting preferences [7],
and these votes can be computed through any voting strategy
to trigger on-chain events such as a movement of tokens or
a change in protocol parameters [11]. It is of high interest to
explore these mechanisms deeply, considering the market size
of 10.4 billion in DAO treasury funds, 1.7 million governance
token holders, and thousands of voting events occurring every
week across the 4,500+ DAOs in existance [4].

Unique dynamics appear in DAOs when evaluating the
token utilization for proposals, particularly with respect to
voter participation and respective weight distributions. One of



Fig. 1. BitDAO’s effective voting power distribution, as measured by token
holder count.

the largest DAOs by treasury size–BitDAO, a DAO-directed
treasury managing over two billion USD worth of tokens–
has over 17,000 stakeholders, and yet only 34 actively voting
members according to DAO analytics platform DeepDAO [3].
Moreover, of the total stakeholders, 90.3% of the governance
power of the DAO is held by 0.2% of the stakeholders; as
shown in Figure 1, 37 total addresses largely dictate the
direction of the DAO.

While this exponential difference in token ownership is to be
expected when both large venture firms and retail individuals
converge to vote together, DAOs employ the practice of dele-
gation to increase token-participation. A popular voting frame-
work, Moloch, has been adopted by 600+ DAOs, including
investment DAOs like MetaCartel Ventures and Raid Guild [1].
Under Moloch’s protocol, each proposal sent to a DAO has two
alternatives: approve or reject. Token holders may allocate all
of their tokens to a binary alternative or delegate their decision
to another member [6]. Little research has been conducted to
exhaustively highlight this model as an optimal voting strategy.
Therefore, our paper takes an empirical approach to finding
optimal delegation splitting rules that DAOs ought to employ
to robustly approach good decisionmaking under a wide range
of model parameters.

C. Literature Review

Since it was introduced in 2009 [9], there have been many
papers exploring various aspects of liquid democracy. Such
literature tends to fall into a few categories: identifying the
drawbacks of liquid democracy [2], developing better mecha-
nisms for delegation [8] [12], and analyzing the computational
aspects of these proposed delegations [5].

Reference [12] in particular studies an extended model of
liquid democracy in which agents are not restricted to delegat-
ing their vote to a single agent but can instead employ a mixed
delegation strategy – a probability distribution demarcating the
agent they will delegate their vote to. The paper finds that
with mixed delegations, it is possible to identify delegation
structures that optimize the accuracy of the group.

The paper finds and defends an algorithm for calculating
optimal weights for each voter’s delegation distribution that

will maximize group accuracy. The authors run various sim-
ulations using this algorithm to compare it to standard liquid
democracy and greedy algorithms that attempt to maximize
individual accuracy (as opposed to group accuracy).

The authors conclude by summarizing their findings to
claim:

1) Weighted delegations enable optimal group accuracy and
better equilibria than standard liquid democracy

2) Nash Equilibria (NE) in greedy delegation (GD) games
with weighted profiles are shown to never be worse
than NE in GD games with pure delegations (and are
sometimes better)

The final aspect of the paper discussed three future areas of
exploration. The first serves as the primary inspiration for our
project– weighted delegations as partial allocations as opposed
to probability of delegation. The second explores scenarios
in which voters cannot freely delegate to all other voters.
The final topic concerned testing weighted delegations under
different voting mechanisms, such as random dictatorship.

In our paper, we build off of this model and extend it further
to reflect the voting processes of decentralized autonomous
organizations by introducing agents with varying numbers
of initial votes, as well as by explicitly allowing agents to
partially delegate to multiple other agents, up to a global
delegation cap.

D. Goals

We aim to determine the relationship between the global
delegation limit k and

1) The probability of selecting the correct alternative.
2) The expected value of the vote share of the correct

alternative.
3) The distribution of voters’ influence on the final out-

come.

II. MODELING THE DAO VOTING SYSTEM

A. Model Specifications

There is a set of two alternatives A = {a1, a2}, a set
of n agents N = {1, 2, . . . , n} indexed by i, and a global
delegation cap k ∈ {1, 2, . . . , n}.

Each agent can be fully described by the following set of
properties:

• Weight wi which specifies the number of tokens (i.e.
votes) they start with.

• Competence ci ∈ [0, 1] which is their probability of
voting for the correct alternative.

• Perceptions pi ∈ [0, 1]n which is their estimate of every
agent’s competence.

• Limit ℓi ≤ k which is the number of agents they will
attempt to delegate to.

Given these properties, each agent in succession selects
a delegation set Di ⊆ N . To do so, they check if adding
the agent with the highest perception score would cause a
delegation cycle. If not, this agent is added to the delegation
set. This agent then has their perception set to zero, and the



process is repeated until the delegation set contains ℓi agents,
or all agents have a perception score of zero. An agent can
always delegate to themselves without creating a delegation
cycle, so every delegation set is guaranteed to be nonempty.

This method of ensuring the delegation graph is realistic for
the case of decentralized autonomous organizations, because
whenever an agent in the DAO makes delegation decisions
they do so effectively on a fixed delegation graph simply
due to the frequency of delegations in real time. Some DAOs
disallow delegation decisions that would create cycles, while
others instead remove voters in cycles from the graph. We
arbitrarily chose the first approach, but find it unlikely that
this choice would alter our findings.

After picking a delegation set, each voter then splits their
weight wi among the agents in the set according to a global
split distribution.

Finally, voting weight is delegated according to the del-
egation sets and splits, and votes are cast according to the
competence values. The winner is selected by simple majority.

B. Parameters
The model is defined over the parameters n and k, as well

as 5 distributions: weights, competences, perceptions, limits,
and splits. We define a number of different options for each
of these initial conditions.

1) Weights: The number of votes each agent starts with.
This distribution represents the power of each agent in the
DAO.

• Exponential: Weights are distributed according to an
exponential distribution with λ = 0.7 and normalized
using the softmax. This reflects the high degree of token
concentration usually seen in large DAOs [3].

• Even: Each agent starts with a fraction 1
n of the voting

power. This better reflects traditional voting systems such
as regular democratic elections.

2) Competences: The probability that each voter chooses
the correct alternative.

• Normal (µ, σ): Perceptions are distributed randomly
between 0 and 1 (inclusive) according to a truncated
normal distribution with mean µ and standard deviation
σ.

• Weighted: Higher weight agents have higher compe-
tences.

3) Perceptions: The metric that agents use to choose who
to delegate to. Intuitively, this is each agent’s guess for the
true competence of every other agent. However, the level of
generality allows it to also capture any other factors that an
agent may use in determining their delegation decision. This
distribution can also be used to model a neighborhood graph
by having agents set the perception score to zero of agents
they do not know.

• Uniform: Perceptions are distributed randomly between
0 and 1 (inclusive) according to a uniform distribution.

• Normal(µ, σ): Perceptions are distributed randomly be-
tween 0 and 1 (inclusive) according to a truncated normal
distribution with mean µ and standard deviation σ.

• True: Perceptions are equivalent to the true competences.
• Noisy True: Perceptions are equivalent to true compe-

tences with added noise distributed normally between -
0.2 and 0.2.

• Inverse: Perceptions are the inverse of the true compe-
tences.

• Weighted: Agents assign higher perception scores to
agents with higher weight.

4) Limits: : The upper bound on the number of delegations
is k, but agents can freely choose to delegate to fewer people.
This distribution defines how many people each agent chooses
to delegate to.

• Uniform: Limits are distributed randomly between 1 and
k (inclusive) according to a uniform distribution.

• Lazy: Limits are distributed randomly between 1 and k
(inclusive) according to a truncated normal distribution
with µ = 1, σ = 1.

5) Splits: : the distribution by which to split votes to k
voters.

• Weighted: Agents distribute weight proportionally to
other agents in their delegation set depending on per-
ception values.

C. Simulation Details

We simulated this model for n = 50 and k = {1, 2, . . . , 50}
under a variety of different distributions. For each value of k,
we ran 1,000 trials to account for the randomness introduced
by the distributions.

III. EXPERIMENTAL SETUP

For each set of distributions simulated, we collected the
following data:

1) Accuracy Results:
For each trial, we recorded the total votes allocated
to the correct alternative. This permits the calculation
global delegation impact on the expected vote share, the
expected success probability, and the variance of both.

2) Concentration Results:
For each trial, we also recorded the post-delegation vote
share of the agent with the largest such value. This data
allowed us to determine the impact the global delegation
limit has on the concentration of power within the DAO.

We simulated the model for the following choices of dis-
tributions, each of which was assigned a label which appears
in the plots below. The distributions are listed in the order
weights, competences, perceptions, limits, splits.

• ENNUW: Exponential, Normal, Normal, Uniform,
Weighted

• 25ENNUW: Exponential, Normal, Normal, Uniform,
Weighted (with a decision threshold of 0.25)

• ENTUW: Exponential, Normal, True, Uniform,
Weighted

• ENIUW: Exponential, Normal, Inverse, Uniform,
Weighted



We have included results for the aforementioned distribution
sets as we believe them to be most realistic for DAO settings.
For weights, an exponential distribution reflects the highly
concentrated distribution of token ownership in most DAOs.
For competences, the distribution is normal to reflect that most
members of a DAO are similar, but there are a few outliers in
both directions. For splits, we believe that distributing tokens
proportionally based on perceived competence is a reasonable
approximation of human behavior.

IV. RESULTS

In [12], prior to the introduction of a centralized solution,
agents greedily maximize their own accuracies. Though the
expected accuracy for any given decision (tokens cast for the
correct alternative / total tokens delegated) may be maximized
by delegating to the single voter with the greatest perceived
accuracy, diversification is a widely employed investment
strategy that an outcome-optimizing (number of times correct /
number of decisions made) agent could be expected to employ.
Indeed, beyond simply looking for the optimal voting rule
for DAOs, this behavior further motivates our consideration
of various values of k, or the maximum number of voters
an individual may delegate to. The remainder of this paper
will refer to these metrics, for the entire group, as “accuracy
maximization” and “outcome optimization”.

A. Accuracy Maximization

We first consider the expected accuracy for any given deci-
sion (number of votes for the correct alternative / total number
of votes cast) at the group level. As shown in Figure 2, when
agents are good at identifying the competence of other agents,
increasing k has a negative effect on the expected accuracy for
each decision; this makes sense because increasing k is akin
to diluting Di with less competent voters. As shown in Figure
3, when perceptions are the inverse of true competence levels
(i.e. voters are inept at discerning one another’s competence
levels), increasing k improves the expected accuracy for any
given decision. Here, delegating to more people increases
both the maximum and weighted average competence level of
voters in Di. Finally, as shown in Figure 4, when perceptions
are random (e.g. uniform or normal), increasing k does not
change the expected accuracy for any given decision. This also
aligns with our intuition; when perceptions are random, each
additional voter one may delegate to has equal probabilities
of being more or less likely to choose the correct alternative
than voters already delegated to.

Though increasing k does not consistently improve expected
accuracy, it is worth noting that small increases in k signif-
icantly lower the variance across independent decisions for
all of these distributional choices. This may be an optimal
property depending on how expected accuracy is distributed
across trials; for example, given two normal distributions with
µ = 0.6, drawing from one with σ2 = 0.1 will give more
values greater than 0.5 (i.e. the threshold for a majority rules
vote) than one with σ2 = 0.2. This is explored further in the
following section.

Fig. 2. Perception: True. Competence: N (0.6, 0.1).

Fig. 3. Perception: Inverse. Competence: N (0.6, 0.1).

B. Outcome Optimization

By mapping the percentage of correct votes out of total
votes cast to a binary value (1 if at least 50% of votes cast
are correct, 0 otherwise), we can investigate how increasing k
affects actual decision outcomes. We do not include plots for
the True (or Inverse) perception distributions as the results are
fairly intuitive; we saw previously that expected accuracy per
decision is decreases (or increases), and the decision success
rate decreases (or increases) as well. We instead focus on the
random (Normal) perception distribution. The decision success
rate for the distribution from Figure 4 is shown in Figure 5.

At first, it may seem surprising that the decision success
rate does not improve, even though the variance in expected
accuracy per decision decreases. However, looking at the
distributions of expected accuracy across trials explains this
phenomena; variance decreases as k increases because our
expected accuracy per decision becomes less bimodal, but the



Fig. 4. Perception: N (0.5, 0.1). Competence: N (0.6, 0.1).

Fig. 5. Perception: N (0.5, 0.1). Competence: N (0.6, 0.1).

number of instances on each side of the 0.5 threshold does not
change. Specifically, the bimodal distribution in the top left of
Figure 6 is the result of the formation of a long delegation
chain, in which the final vote is cast by a single voter whose
competence was drawn from N (0.6, 0.1).

Thus, we find that allowing delegation to more voters
has the effect of increasing voter participation at no cost to
expected accuracy for a given decision or the success rate
across multiple decisions. This is shown more explicitly in
Figure 7. Additionally, we can see from Figure 8 that for
different thresholds, the decision success rate does in fact
increase with k.

V. DISCUSSION

Several interesting discussions arise from the results of our
simulations.

First, under the accuracy maximizing lens we observed that
for perceptions inversely correlated with true competence lev-

Fig. 6. Perception: N (0.5, 0.1). Competence: N (0.6, 0.1).

Fig. 7. Perception: N (0.5, 0.1). Competence: N (0.6, 0.1).

els, increasing k does increase the group’s expected accuracy
for each decision. Inverse perceptions (highest willingness to
delegate to those with the lowest true competence levels) may
occur in the real world. Suppose certain members of a DAO
have low true competence but maintain disproportionately
large platform audiences on social media. These members (a)
appear knowledgeable enough for the many people who see
them to delegate to them and/or (b) gain a cult following where
people delegate to them regardless of their actual or portrayed
competence. Regardless of the reason for delegation, both (a)
and (b) are reflected in our perception distribution. Thus, when
DAO membership is subject to inverse perceptions, encour-
aging voters to delegate to more people improves expected
accuracy by increasing the likelihood of delegating to a more
competent voter.

Second, across a variety of distributional choices one ro-
bust result is that increasing k reduces the maximum post-
delegation vote share. We see that for small values of k, long



Fig. 8. Perception: N (0.5, 0.1). Competence: N (0.6, 0.2).

delegation chains form because few agents choose to delegate
to themselves, resulting in extreme concentration of voting
power. This dynamic holds truer in larger DAOs like BitDAO
[3]. However, as k increases, each agent becomes more
likely to delegate at least some weight to themselves, and a
more equitable distribution emerges. The extreme diminishing
returns we see for this effect suggests that DAOs could achieve
a more even distribution of power by allowing a very small
amount of vote splitting.

Lastly, we see that with random perception distributions
and voting thresholds below 0.5, increasing k can increase
the decision success rate. Though a DAO is unlikely to make
a decision where the ”correct” alternative is known prior to the
vote, consider the following illustrative scenario in which this
result could be useful. Suppose a referendum is up for voting,
and the ”correct” alternative is ”No”. If ”No” receives at
least 25% of votes, then the referendum will be vetoed. Thus,
increasing k will increase the likelihood that the referendum
is vetoed.

VI. CONCLUSION

Overall, we recommend that DAOs increase the maximum
number of allowed delegations from 1 to 10. Our simulations
shows that this k value is optimal when one cannot make
an informed choice on various voter perception distributions.
Additionally, it is socially more attainable as as larger k will
overwhelm voters and further decrease voter participation. If
voter perceptions are inversely related to true competence
levels, increasing the number of allowed delegations has a
clearly positive effect on the group’s expected accuracy as
well as the decision success rate. If voters have limited
perception accuracy (but not inversely so), increasing the
number of allowed delegations will increase voter participation
without sacrificing expected accuracy or decision success rate.
Only when voters’ perceptions are highly correlated with
true competence levels will increasing the number of allowed
delegations decrease the vote share of the correct alternative as

well as the decision success rate. However, in the real world,
voters are unlikely to have very accurate assessments of one
another’s competence levels, especially when DAO members
may be anonymous.
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